
Background on Classification Tree Analysis:  

Classification tree analysis comprises a set of model-free methods for analyzing multivariate data 
(Fisher and Lenz, 1996; Biggs et al., 1991; Cox, 1989) and "mining" large databases for useful 
knowledge (Elder and Pregibon, 1996). Classification tree algorithms search for combinations of 
values of independent variables that best predict the value of the dependent variable. Ability to 
predict is measured by criteria such as the entropy, variance, or statistical significance of the 
conditional frequency distribution of values for the dependent variable, conditioned on the answers to 
questions asked. Questions are represented by partitioning the possible values of variables into 
subsets and asking which subset the value for a particular individual belongs to. Based on the answer, 
a new question is asked. The result is a classification tree, with nodes representing questions and 
branches at each node representing possible answers. Internal nodes are also called splits, while leaf 
nodes ("tips" of the tree) represent probabilistic classifications or predictions of the value of the 
dependent variable. The tree stops growing when no additional questions will improve the ability to 
predict the value of the dependent variable, as measured by the selected criterion. Alternatively, trees 
may be grown larger than needed and then pruned back until the estimated error rate is minimized 
(Breiman et al., 1984). Different splitting criteria and pruning or stopping criteria lead to different 
specific classification tree algorithms. All the classification trees discussed in this paper were created 
using the specific algorithm of Biggs et al. (1991), which uses estimated statistical significance (based 
on F- and chi square statistics for continuous and categorical variables, respectively), with a 
Bonferroni adjustment to correct for multiple comparisons in choosing class boundaries, for its 
splitting and stopping criteria. (See Biggs et al., 1991 for details and Monte-Carlo validation of the 
performance of this specific algorithm.) Each tip of the tree, corresponding to a unique branch or path 
through it, represents a sequence of questions and answers. The conditional frequency distribution of 
the value of the dependent variable, based on the questions and answers leading to the tip, constitutes 
the (probabilistic) prediction from the classification tree at that tip.  

Several features make classification trees particularly well suited to avoid many of the threats to valid 
causal inference identified in Table 1. Specifically:  

 

Multiple hypothesis testing and multiple comparisons bias can be avoided by incorporating 
Bonferroni estimates of true p-values directly into node- splitting criteria (Biggs et al., 1991) and by 
pruning back large trees to reduce false positives to the desired global significance levels. Several 
commercial classification tree algorithms allow the use of hold-out samples and/or cross-validation 
techniques to provide data-driven estimates of the true p-values achieved (Breiman et al., 1984).  

 

Model specification errors may be reduced or eliminated because classification trees do not require 
or assume any specific parametric form for the relation between independent and dependent 
variables. Thus, they provide"model-free" approximations to the multivariate response surface.  

 

Aggregation errors are reduced by treating individuals rather than aggregate populations or groups 
as the units of analysis.  

Some imperfections due to quantization of variables remain, however. For example, classification 
trees approximate the true multi-factor response surface for cancer by, in effect, piecewise-constant 
multivariate histograms. Other classification tree algorithms yield piecewise-linear approximations of 
the response surface (Breiman et al., 1984), while the newer Multiple Adaptive Regression Splines 
(MARS) technique provides smooth approximations (Elder and Pregibon, 1996). Such 
approximations introduce a potential source of error compared to the true but unknown response 
surface, but the errors are often small (since ones that are large enough to be statistically significant 
lead to additional branches) and are inherently local, in contrast to the global errors introduced by 
wrong model forms or other specification errors in parametric statistical models.  

 



From Classification Trees To Causal Graphs  

Formally, a causal graph is defined as a directed acyclic graph (DAG) in which nodes represent 
variables and each node is conditionally independent (CI) of its ancestors, given the values of its 
parents, i.e., its immediate predecessors in the directed graph (Jensen, 1996). (An ancestor of a node 
is here defined recursively as a parent of a parent or a parent of an ancestor.) Such DAGs are among 
the most widely used structures for representing causal knowledge (e.g., Fisher and Lenz, 1996) and 
for "mining" useful patterns from large data bases (Fayyad et al., 1996). Their precise meaning and 
interpretations have been placed on a useful philosophical foundation by Shafer (1996). They may be 
used not only to represent CI relations among subsets of variables, but also to indicate that changing 
the levels of parent variables will change the conditional probability distributions for the levels of 
their children (Pearl, 1996). These and other interpretations and the relations among them are more 
fully developed by Shafer (1996).  

Classification tree algorithms can be used to test the CI relations in DAG models by testing whether 
the hypothesized parents of each node (if any) form a minimal sufficient subset with respect to its 
ancestors for predicting its value. The following two-phase tree-growing algorithm accomplishes this 
test:  

Algorithm A: Two-Phase Tree Growing Procedure for Testing Node Parents  

For each variable (node) having incoming arrows in the hypothesized DAG: 1. Grow a classification 
tree with the selected node as the dependent variable and with only the hypothesized parents of the 
node allowed as potential independent variables (possible splits). Call the resulting tree T1. 2. Expand 
the set of allowed independent variables to include all ancestors of the selected node. Then, resume 
the tree-growing algorithm, starting at the leaf nodes in the tree generated in step 1. Call the resulting 
tree T2. 3. If none of the ancestors introduced in Step 2 enters the tree (i.e., T2 = T1), then the 
hypothesized DAG structure specifying the parents of the node is confirmed; otherwise, it is rejected. 
Repeat until all nodes with incoming arrows have been tested.  

Since the binary relation "is a parent of" between nodes suffices to determine the entire DAG 
structure, Algorithm A provides a useful tool for helping to determine DAG models from multivariate 
data. Conversely, the insights derived from multiple classification trees can often be combined and 
succinctly summarized in a single causal graph. Although any single classification tree is limited to a 
single dependent variable, causal graphs provide a natural way to show multiple dependent variables 
and the causal relations (in terms of shared parents or ancestors) among them.  

To learn more, read our page on A DATA-MINING APPROACH TO FORECASTING 
TELECOMMUNICATIONS DEMANDS AND NETWORK LOADS or download Dr. Cox's paper on 
LEARNING IMPROVED DEMAND FORECASTS FOR TELECOMMUNICATIONS PRODUCTS 
FROM CROSS-SECTIONAL DATA  
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